Supermodularity in Mean-Partition Problems*

F.H. CHANG and F.K. HWANG
Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan, P.R. China 300 (e-mail: fei.am91g@nctu.edu.tw; fhwang@math.nctu.edu.tw)

(Received 23 November 2004; accepted 4 December 2004)

Abstract

Supermodularity of the λ function which defines a permutation polytope has proved to be crucial for the polytope to have some nice fundamental properties. Supermodularity has been established for the λ function for the sum-partition problem under various models. On the other hand, supermodularity has not been established for the mean-partition problem even for the most basic labeled single-shape model. In this paper, we fill this gap and also settle for all other models except one. We further extend our results to other types of supermodularity.

Key words: mean-partition, supermodular

1. Introduction

Given a real-value function λ on the subsets of $\{1, \ldots, p\}$ with $\lambda(\phi)=0$, each permutation $\sigma=\left(\sigma_{1}, \ldots, \sigma_{p}\right)$ of $\{1, \ldots, p\}$ defines a vector $\lambda_{\sigma}=\left(\left(\lambda_{\sigma}\right)_{1}, \ldots,\left(\lambda_{\sigma}\right)_{p}\right)$ such that

$$
\left(\lambda_{\sigma}\right)_{k}=\lambda\left(\cup_{i=1}^{k} \sigma_{i}\right)-\lambda\left(\cup_{i=1}^{k-1} \sigma_{i}\right) \quad \text { for } 1 \leqslant k \leqslant p
$$

λ is called supermodular if for all subsets I, J of $\{1, \ldots, p\}$,

$$
\lambda(I \cup J)+\lambda(I \cap J) \geqslant \lambda(I)+\lambda(J)
$$

and strictly supermodular if the inequality is strict for all I, J not satisfying $I \subseteq J$ or $J \subseteq I$.
The permutation polytope induced by λ, denoted H^{λ}, is the convex hull of $\left\{\lambda_{\sigma}\right.$: all $\left.\sigma\right\}$. These polytopes have been studied in the literature with different motivations. For example, Shapley [6] studied the case of convex p-person game. For a subset $I \subseteq\{1, \ldots, p$,$\} let \lambda(I)$ denote the payoff to I if the members of I form an alliance. Then stability of an alliance $I \cup J$ requires λ to be supermodular. If not, say, there exist I and J with

[^0]$$
\lambda(I \cup J)+\lambda(I \cap J)<\lambda(I)+\lambda(J) .
$$

Let y_{i} be the payoff of player i for each i in $I \cup J$ under the alliance $I \cup J$. Then it is easily verified that either

$$
\sum_{i \in I} y_{i}<\lambda(I), \quad \text { or } \sum_{i \in J} y_{i}<\lambda(J) .
$$

In the first(second) case, $I(J)$ will form its own alliance to obtain a larger payoff.
The core of a convex p-person game is the solution set of the linear inequality system

$$
\sum_{i \in I} x_{i} \geqslant \lambda(I) \quad \text { for all } I \subseteq\{1, \ldots, p\} \quad \text { and } \quad \sum_{i=1}^{p} x_{i}=\lambda(\{1, \ldots, p\}) .(1.1)
$$

Let C^{λ} denote the polytope defined by (1.1). Among other things (See Theorem 3.2 of [2] for more details), Shapley proved

THEOREM 1. Suppose λ is supermodular. Then

(1) $H^{\lambda}=C^{\lambda}$,
(2) the vectors of H^{λ} are precisely the λ_{σ} 's where σ ranges over all permutations of $\{1, \ldots, p\}$.

The importance of Theorem 1 (1) is that if an optimization problem is to maximize a linear function of $\left\{x_{i}\right\}$, then C^{λ} provides a suitable setting for a linear programming solution. The importance of Theorem 1 (2) is that if the objective function is convex (in fact, quasi-convex suffices, see [5]), then an optimal solution can be found among the set of vertices of H^{λ}. Gao et al. [2] studied the single-shape sum-partition problem in which the indices of a set N of n real numbers $\theta_{1} \leqslant \theta_{2} \leqslant \cdots \leqslant \theta_{n}$ is to be partitioned into p parts π_{1}, \ldots, π_{p}, where the size of π_{i} is given to be $n_{i}\left(\left\{\left(n_{1}, \ldots, n_{p}\right): \sum_{i=1}^{p} n_{i}=n\right\}\right.$ is called a shape $)$, to maximize an objective function $f\left(\sum_{j \in \pi_{1}} \theta_{j}, \ldots, \sum_{j \in \pi_{p}} \theta_{j}\right)$. For I a subset of $\{1, \ldots, p\}$, define $n(I)=\sum_{I \in I} n_{i}$. They defined $\lambda(I)=\sum_{j=1}^{n(I)} \theta_{j}$ and proved λ is supermodular. Therefore Theorem 1 is applicable. Here, H^{λ} is the convex hull of all $\left(n_{i}, \ldots, n_{p}\right)$-partitions (each partition is a point), and C^{λ} is the polytope defined by

$$
\sum_{i \in I} \sum_{j \in \pi_{i}} \theta_{j} \geqslant \lambda(I) \text { for all } I \subseteq\{1, \ldots, p\} \text { and } \sum_{j=1}^{n} \theta_{j}=\lambda(\{1, \ldots, p\}) .
$$

While the sum partition problem has been dominating in optimal partition problems, other partition problems have also been considered. Define $\bar{\theta}_{\pi_{i}}=\sum_{j \in \pi_{i}} \theta_{j} / n_{i}$, namely, the mean of θ_{j} 's in π_{i}. Anily and Federgruen [1] first studied the single-shape mean-partition problem where the objective function is $f\left(\bar{\theta}_{\pi_{1}}, \ldots, \bar{\theta}_{\pi_{p}}\right)$. However, the function λ as defined in (1.1) has not been proved to be supermodular and Theorem 1 is thus not applicable. In this paper, we prove the supermodularity.

2. Supermodularity

For the single-shape partition case, without loss of generality, we can assume that $n_{1} \leqslant n_{2} \leqslant \cdots \leqslant n_{p}$.

For $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subseteq\{1, \ldots, p\}$, we suppose that $i_{i}<i_{2}<\cdots<i_{k}$. Define $N_{i_{k}}=\sum_{x=1}^{k} n_{i_{x}}$ for $1 \leqslant k \leqslant|I|$. Set

$$
\begin{equation*}
\lambda(I)=\sum_{k=1}^{|I|}\left(\sum_{j=N_{i_{k-1}}+1}^{N_{i_{k}}} \theta_{j} / n_{i_{k}}\right) . \tag{2.1}
\end{equation*}
$$

We first prove
LEMMA 2. For any shape partition $\pi=\left(\pi_{1}, \ldots, \pi_{p}\right), \sum_{i \in I} \bar{\theta}_{\pi_{i}} \geqslant \lambda(I)$.
Proof. Define $A=\left\{\theta_{j}: j \in \pi_{i}, i \in I\right\}$ and $B=\left\{\theta_{1}, \ldots, \theta_{N_{i| |}}\right\}$ Suppose $\lambda(I)$ is defined on A but $A \neq B$. Then we can reduce $\sum_{i \in I} \bar{\theta}_{\pi_{i}}$ by replacing any $\theta_{j} \in$ $A \backslash B$ with a $\theta_{k} \in B \backslash A$. Therefore we assume $A=B$. Note that

$$
\begin{equation*}
\bar{\theta}_{\pi_{i}}=\sum_{j \in \pi_{i}} \theta_{j}\left(1 / n_{i}\right), \tag{2.2}
\end{equation*}
$$

and $\theta_{1}, \ldots, \theta_{N_{i|I|}}$ are ordered from small to large. In $\lambda(I)$, the sequence of the multipliers for the θ_{j} 's is

$$
\underbrace{\frac{1}{n_{i_{1}}}, \ldots, \frac{1}{n_{i_{1}}}}_{n_{i_{1}}}, \underbrace{\frac{1}{n_{i_{2}}}, \ldots, \frac{1}{n_{i_{2}}}}_{n_{i_{2}}}, \ldots, \underbrace{\frac{1}{n_{i| | \mid}}, \ldots, \frac{1}{n_{i_{|| |}}}}_{n_{i| | \mid}} \text {, }
$$

which are ordered from large to small. Since for any $\pi, \sum_{i \in I} \bar{\theta}_{\pi_{i}}$ is computed by multiplying the same set of θ_{j} 's with the same set of multipliers, except in different parings, $\lambda(I)$ achieves the minimum by pairing reversely.

Define $\Delta_{I}(\pi)=\lambda(I)-\lambda\left(I \backslash\left\{i_{1}\right\}\right)$.

LEMMA 3. Suppose $I \subset J$ and $i_{1}=j_{1}$. Then $\Delta_{I}(\pi) \leqslant \Delta_{J}(\pi)$.
Proof. First assume $n_{j_{1}}=1$

$$
\begin{aligned}
& J: \overbrace{\theta_{1}}^{\pi_{j_{1}}}, \overbrace{\theta_{2}, \ldots, \theta_{n_{j_{2}}}, \theta_{n_{j_{2}+1}}}^{\pi_{j_{2}}}, \overbrace{\theta_{n_{j_{2}}+2}, \ldots, \theta_{n_{j_{2}}+n_{j_{3}}}, \theta_{n_{j_{2}+n_{j_{3}}+1, \ldots}, \ldots}^{\pi_{j_{3}}}}^{J^{\prime}}: \underbrace{}_{\underbrace{\theta_{1}, \theta_{2}}_{\pi_{j_{3}}^{\prime}}, \ldots, \theta_{n_{j_{2}}}, \underbrace{}_{\underbrace{}_{n_{j_{2}}+1}, \theta_{n_{j_{2}}+2}, \ldots, \theta_{n_{j_{2}}+n_{j_{3}}}}, \theta_{n_{j_{2}}+n_{j_{3}}+1, \ldots}}
\end{aligned}
$$

Figure 2.1. $\pi_{j_{2}}^{\prime}$ and $\pi_{j_{3}}^{\prime}$.
Let π^{\prime} represent the corresponding partition on $J^{\prime}=J \backslash\left\{j_{1}\right\}$. We use the same subscript j_{k} to remind the reader that $n_{j_{k}}=n_{j_{k}}^{\prime}$ for all $2 \leqslant k \leqslant|J|$.

Figure 2.1 illustrates $\pi(J)$ and $\pi^{\prime}\left(J^{\prime}\right)$. Note that the components of $\bar{\theta}_{\pi_{j_{k}}}$ (as in the representation (2.2)) cancels with the components in $\bar{\theta}_{\pi_{j_{k}}}$ except the first one in $\bar{\theta}_{\pi_{j_{k}}}$ and the last one in $\bar{\theta}_{\pi_{j_{k}}}$. Hence

$$
\bar{\theta}_{\pi_{j_{k}}}-\bar{\theta}_{\pi_{j_{k}}^{\prime}}=\frac{\left(\theta_{N_{j_{k}}}-\theta_{N_{j_{k-1}}}\right)}{n_{j_{k}}} \quad \text { for } 1 \leqslant k \leqslant|J|
$$

Consequently,

$$
\Delta_{J}(\pi)=\sum_{k=1}^{|J|} \frac{\theta_{N_{j_{k}}}-\theta_{N_{j_{k-1}}}}{n_{j_{k}}}
$$

Similarly,

$$
\Delta_{I}(\pi)=\sum_{k=1}^{|I|} \frac{\theta_{N_{i_{k}}}-\theta_{N_{i_{k-1}}}}{n_{i_{k}}}
$$

Suppose $i_{k}=j_{g(k)}$ with $k \leqslant g(k), 2 \leqslant k \leqslant|I|$. Then

$$
\begin{align*}
G_{k}(J) & \equiv \sum_{h=g(k-1)+1}^{g(k)} \frac{\theta_{N_{j_{h}}}-\theta_{N_{j_{h-1}}}}{n_{j_{h}}} \\
& \geqslant \sum_{h=g(k-1)+1}^{g(k)} \frac{\theta_{N_{j_{h}}}-\theta_{N_{j_{h-1}}}}{n_{j_{g(k)}}}=\frac{\theta_{N_{j_{g(k)}}}-\theta_{N_{j_{g}(k-1)}}}{n_{j_{g(k)}}} \tag{2.3}
\end{align*}
$$

Note that

$$
\Delta_{J}(\pi)-\Delta_{I}(\pi) \geqslant \sum_{x=1}^{|I|}\left[G_{x}(J)-\frac{\left(\theta_{N_{i_{x}}}-\theta_{N_{i_{x-1}}}\right)}{n_{i_{x}}}\right]
$$

We prove for all $1 \leqslant k \leqslant|I|$,

$$
\sum_{x=1}^{k}\left[G_{x}(J)-\frac{\left(\theta_{N_{i_{x}}}-\theta_{N_{i_{x-1}}}\right)}{n_{i_{x}}}\right] \geqslant \frac{\left(\theta_{N_{i_{g}(k)}}-\theta_{N_{i_{k}}}\right)}{n_{i_{k}}},
$$

by induction on k. For $k=1$

$$
G_{1}(J)-\frac{\left(\theta_{N_{i_{1}}}-\theta_{N_{i_{0}}}\right)}{n_{i_{1}}}=\frac{\left(\theta_{N_{j_{1}}}-\theta_{N_{j_{0}}}\right)}{n_{j_{1}}}-\frac{\left(\theta_{N_{i_{1}}}-\theta_{N_{i_{0}}}\right)}{n_{i_{1}}}=0
$$

since $j_{1}=i_{1}, N_{i_{1}}=n_{i_{1}}=n_{j_{1}}=N_{j_{1}}=1, \theta_{N_{j_{0}}}=\theta_{N_{j_{0}}}=\theta_{N_{i_{0}}}=0$. For general $k>1$,

$$
\begin{aligned}
\sum_{x=1}^{k}\left[G_{x}(J)-\frac{\left(\theta_{N_{i x}}-\theta_{N_{i_{x}-1}}\right)}{n_{i_{x}}}\right] \geqslant & G_{k}(J)-\frac{\left(\theta_{N_{i_{k}}}-\theta_{N_{i_{k}-1}}\right)}{n_{i_{k}}}+\frac{\left(\theta_{N_{j_{g}(k-1)}}-\theta_{N_{i_{k}-1}}\right)}{n_{i_{k}-1}} \\
\geqslant & \frac{\left(\theta_{N_{j_{g}(k)}}-\theta_{N_{j_{g}(k-1)}}\right)}{n_{j_{g}(k)}}-\frac{\left(\theta_{N_{i_{k}}}-\theta_{N_{i_{k}-1}}\right)}{n_{i_{k}}} \\
& +\frac{\left(\theta_{N_{j_{g}(k-1)}}-\theta_{N_{i_{k-1}-1}}\right)}{n_{i_{k}}} \\
& =\frac{\left(\theta_{N_{j_{g}(k)}}-\theta_{N_{i_{k}}}\right)}{n_{i_{k}}},
\end{aligned}
$$

since $n_{j_{g(k)}}=n_{i_{k}} \geqslant n_{i_{k-1}}$. Lemma 3 is proved.
For $n_{j}>1$, we can handle in two ways. The first way is to notice that the only difference from the $n_{j_{1}}=1$ case is that $\pi_{j_{k}}$ and $\pi_{j_{k}}^{\prime}$ would miss each other out in $n_{j_{1}}$ elements instead of 1 in Figure 2.1. So the numerator of (2.3) would be a difference between two $n_{j_{k}}$-sums; but the same logic applies. The second way is to notice that $\bar{\theta}_{n_{j_{1}}}$ gets canceled out in $\Delta_{J}(\pi)-\Delta_{I}(\pi)$. So the scenario is to compare the impact on I and J when both moves back $n_{j_{1}}$ elements. But this is equivalent to moving one element back $n_{j_{1}}$ times.

Finally, we are ready to prove the main result of this section.
THEOREM 4. λ as defined in (2.1) is supermodular.
Proof. Let I and J, be two subsets of $\{1, \ldots, p\}$. Without loss of generality, assume $I \cup J=\{1,2, \ldots, m\}$. We prove Theorem 4 by induction on m. Theorem 4 is trivially true for $m=1$. We prove the general $m \geqslant 2$ case.

Case (1) $1 \in I \cap J$, i.e. both I and J contain 1. Delete π_{1} and the θ_{j} 's in it. Suppose $n_{1}=k$. Then the reduced partition problem is to partition the set $\left\{\theta_{k+1}, \ldots, \theta_{n}\right\}$ into $p-1$ parts. Theorem 4 follows by induction.
Case (2) $1 \notin I \cap J$. Without loss of generality, assume $1 \in I$. Let $J^{*}=J \cup$ $\{1\}$. By case (1),

$$
\begin{aligned}
0 & \leqslant \lambda\left(I \cup J^{*}\right)+\lambda\left(I \cap J^{*}\right)-\lambda(I)-\lambda\left(J^{*}\right) \\
& =\left[\lambda\left(I \cup J^{*}\right)-\lambda(I)\right]+\left[\lambda\left(I \cap J^{*}\right)-\lambda\left(J^{*}\right)\right] \\
& \leqslant[\lambda(I \cup J)-\lambda(I)]+[\lambda(I \cap J)-\lambda(J)] .
\end{aligned}
$$

Since the first difference is unchanged, and the second becomes larger by Lemma 3, i.e., $\lambda\left(I \cap J^{*}\right)-\lambda(I \cap J)=\Delta_{I \cap J^{*}}(\pi) \leqslant \Delta_{J^{*}}(\pi)=\lambda\left(J^{*}\right)-\lambda(J)$.

3. Other Mean-Partition Models

In the last two sections we studied the labeled single-shape partition problem where the λ function is defined on a single shape. In this section we study some other partition models which have been studied before [4] for the sum-partition problem. One common feature of these models is that λ is defined on a given set S of shapes. For example, in the unlabeled single-shape model, let $\left\{n_{1}, n_{2}, \ldots, n_{p}\right\}$ denote the given single shape. Then S consists of all permutations of $\left\{n_{1}, n_{2}, \ldots, n_{p}\right\}$. In the labeled bounded-shape model, a set of lower and upper bounds $L_{i} \leqslant$ $n_{i} \leqslant U_{i}, i=1, \ldots p$, is given, and S consists of all shapes $\left\{n_{l}, n_{2}, \ldots, n_{p}\right\}$ satisfying the bounds with $\sum_{i=1}^{p} n_{i}=n$. In the labeled constraint-shape model, S is a given set of shapes with each summing to n. In the unlabeled version for either the bounded-shape of the constraint-shape model, S consists of all permutations of a shape in the labeled version.
Let $\lambda_{s}(I)$ denote the $\lambda(I)$ in (2.1) where I is taken from the shape $s \in S$. Define $\lambda(I)=\min _{s \in S} \lambda_{s}(I)$. Then clearly

LEMMA 5. For any partition $\pi=\left(\pi_{1}, \pi_{2}, \ldots, \pi_{p}\right)$ with shape $s=\left(n_{1}, n_{2}, \ldots, n_{p}\right), s \in S, \sum_{i \in I} \bar{\theta}_{\pi_{i}} \geqslant \lambda(I)$.
Let $X \Rightarrow Y$ mean supermodularity for model X implies for model Y. Then for both the labeled and unlabeled case, clearly,

$$
\text { constraint-shape } \Rightarrow \text { bounded-shape } \Rightarrow \text { single-shape. }
$$

For the sum-partition problem, the following results have been obtained [4]:

Labeled	Shape	θ	Supermodularity
Yes	Single	General	Yes
Yes	Bounded	General	Yes
Yes	Constrained	1-side	No
No	Single	1-sided	Yes
No	Single	General	No
No	Bounded	1-sided	No
No	Constrained	1-sided	No

Here, 1 -sided means that θ 's are either all nonnegative or all nonpositive. In this section, we also consider the supermodularity properties of λ for various mean-partition models. Note that only the ordering of θ 's, but not their signs, matters for the mean-partition problem. Therefore there is no need to study the 1 -sided case.

LEMMA 6. Let $S=\{s\}$ denote the set of all permutations of the shape s. Consider $s=\left\{n_{1}, n_{2}, \ldots, n_{p}\right\}$ and $I=\{1,2, \ldots, k\}$, then for all $I^{\prime}=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ with $i_{1}<i_{2}<\cdots<i_{k}$, and $\left\{i_{1}, i_{2}, \ldots, i_{k}\right\} \subseteq\{1,2, \ldots, p\}, \lambda\left(I^{\prime}\right) \geqslant \lambda(I)$.
Proof. Since θ_{j} is increasing and $i_{h} \geqslant h, 1 \leqslant h \leqslant k$. We have $N_{i_{h}} \geqslant N_{h}$ and $\theta_{N_{i_{h}}+x} \geqslant \theta_{N_{h}+x}$ for all $x>0$.

$$
\sum_{j=N_{h-1}+1}^{N_{h}} \frac{\theta_{j}}{n_{h}} \leqslant \sum_{j=N_{h-1}+1}^{N_{h-1}+n_{i_{h}}} \frac{\theta_{j}}{n_{i_{h}}} \leqslant \sum_{j=N_{i_{h-1}}+1}^{N_{i_{h}}} \frac{\theta_{j}}{n_{i_{h}}} .
$$

Then,

$$
\lambda(I)=\sum_{h=1}^{|I|}\left(\sum_{j=N_{h-1}+1}^{N_{h}} \frac{\theta_{j}}{n_{h}}\right) \leqslant \sum_{h=1}^{\left|I^{\prime}\right|} \sum_{j=N_{i_{h-1}}+1}^{N_{i_{h}}} \frac{\theta_{j}}{n_{i_{h}}}=\lambda\left(I^{\prime}\right) .
$$

THEOREM 7. Consider $S=\left\{\left(n_{1}, n_{2}, \ldots, n_{p}\right)\right\}$. Then λ is supermodular.
Proof.

$$
\lambda(I)=\sum_{h=1}^{|I|}\left(\sum_{j=N_{h-1}+1}^{N_{h}} \frac{\theta j}{n_{h}}\right) \text { for all } I \subseteq\{1,2, \ldots, p\} .
$$

We may assume that $I \cap J=\varnothing$. Suppose to the contrary that $I \cap J \neq \varnothing$. We can delete n_{i} 's, for all $i \leqslant|I \cap J|$ and θ_{j}, for all $j \leqslant N_{|I \cap J|}$. Then the reduced partition problem is to partition the set $\left\{\theta_{N_{I \cap J}+1}, \ldots, \theta_{n}\right\}$ into $p-|I \cap J|$ parts
with $I^{\prime} \cap J^{\prime}=\varnothing$. Without loss of generality, let $I \cup J=\{1,2, \ldots,|I|+|J|\}, I=$ $\{1,2, \ldots,|I|\}$ and $J=\{|I|+1,|I|+2, \ldots,|I|+|J|\}$. Then

$$
\begin{aligned}
\lambda(I)+\lambda(J) & =\sum_{h=1}^{|I|}\left(\sum_{j=N_{h-1}+1}^{N_{h}} \frac{\theta_{j}}{n_{h}}\right)+\sum_{h=1}^{|J|}\left(\sum_{j=N_{h-1}+1}^{N_{h}} \frac{\theta_{j}}{n_{h}}\right) \\
& \leqslant \sum_{h=1}^{|I|}\left(\sum_{j=N_{h-1}+1}^{N_{h}} \frac{\theta_{j}}{n_{h}}\right)+\sum_{h=1}^{|J|}\left(\sum_{j=N_{|| |+h-1}+1}^{N_{I \mid+h}} \frac{\theta_{j}}{n_{|I|+h}}\right)
\end{aligned}
$$

(by Lemma 6)

$$
=\lambda(I \cup J) .
$$

For a given p -vector $\left(a_{1}, a_{2}, \ldots, a_{p}\right)$, let $a_{[i]}$ denote the i-th smallest a_{j}. A p-vector $A=\left(a_{1}, a_{2}, \ldots, a_{p}\right)$ majorizes another p-vector $B=\left(b_{1}, b_{2}, \ldots, b_{p}\right)$ if for all $1 \leqslant k \leqslant p-1$

$$
\sum_{i=1}^{k} a_{[i]} \leqslant \sum_{i=1}^{k} b_{[i]}, \quad \text { for all } 1 \leqslant k \leqslant p-1, \quad \text { and } \quad \sum_{i=1}^{p} a_{i}=\sum_{i=1}^{p} b_{i}
$$

For a set S of shapes, $A \in S$ is a nonmajorized shape if there does not exist a shape $B \in S$ such that B majorizes A.

Next we show by a counterexample that for the unlabled bounded-shape model, λ is not supermodular. Note that we only need to consider that λ takes values from the set of nonmajorized shapes since if a shape B is majorized by another shape A, then $\lambda_{B}(I) \geqslant \lambda_{A}(I)$ and B would not be chosen in defining $\lambda(I)$.

Let $p=4, n=19, l_{1}=1, l_{2}=l_{3}=l_{4}=2, u_{1}=13, u_{2}=u_{3}=u_{4}=6, \theta_{1}=1, \theta_{2}=$ $\cdots=\theta_{6}=2, \theta_{i}=5,7 \leqslant i \leqslant 19, I=\{1,2\}, J=\{1,3\}$. The nonmajorized shapes are $\{(1,6,6,6),(13,2,2,2)$ and their permutations $\}$

$$
\begin{aligned}
\lambda(I) & =\left(\frac{1+2}{2}+\frac{2+2}{2}\right) \text { or }\left(\frac{1}{1}+\frac{2+2+2+2+2+5}{6}\right)=\frac{7}{2}=\lambda(J), \\
\lambda(I \cap J) & =\frac{1}{1}=1, \\
\lambda(I \cup J) & =\frac{1+2}{2}+\frac{2+2}{2}+\frac{2+2}{2}=\frac{11}{2}, \\
\lambda(I)+\lambda(J) & =7>\frac{13}{2}=\lambda(I \cap J)+\lambda(I \cup J) .
\end{aligned}
$$

Next we show by a counterexample that for the labeled constrained shape model, λ is not supermodular. Let $p=4, n=19, S=\{(2,2,2,13),(1,6,6,6)\}$,

$$
\begin{aligned}
\theta_{1}=1, \theta_{2}=\cdots= & \theta_{6}=2, \theta_{i}=5,7 \leqslant i \leqslant 19, I=\{1,2\}, J\{1,3\} . \\
\lambda(I) & =\left(\frac{1+2}{2}+\frac{2+2}{2}\right) \operatorname{or}\left(\frac{1}{1}+\frac{2+2+2+2+2+5}{6}\right)=\frac{7}{2}=\lambda(J), \\
\lambda(I \cap J) & =\frac{1}{1}=1, \\
\lambda(I \cup J) & =\frac{1+2}{2}+\frac{2+2}{2}+\frac{2+2}{2}=\frac{11}{2}, \\
\lambda(I)+\lambda(J) & =7>\frac{13}{2}=\lambda(I \cap J)+\lambda(I \cup J) .
\end{aligned}
$$

The following table summarizes our results.

Labeled	Shape	Supermodularity
Yes	Single	Yes
Yes	Bounded	$?$
Yes	Constrained	No
No	Single	Yes
No	Bounded	No
No	Constrained	No

Finally, we give a sufficient condition for establishing supermodularity.
THEOREM 8. Let Π be an unlabeled (labeled) bounded-shape set. If $\lambda(I \cap$ $J)$ and $\lambda(I \cup J)$ can take values from the same shape A, then $\lambda(I)+\lambda(J) \leqslant$ $\lambda(I \cap J)+\lambda(I \cup J)$.

Proof. $\lambda(I) \leqslant \lambda_{A}(I), \lambda(J) \leqslant \lambda_{A}(J)$. Since supermodularity holds for the single shape $A . \lambda(I)+\lambda(J) \leqslant \lambda_{A}(I)+\lambda_{A}(J) \leqslant \lambda_{A}(I \cap J)+\lambda_{A}(I \cup J)=\lambda(I \cap$ $J)+\lambda(I \cup J)$.

4. Stronger Supermodularites

Hwang et al. [3] defined the notion of strong supermodularity which lies between supermodularity and strict supermodularity. Let I, J, K be subsets of $\{1,2, \ldots, p\}$ such that $I \subset K \subset J$. Define $L=I \cup(J \backslash K)$. A triplet (I, J, K) is called λ-flat if $\lambda(I)+\lambda(J)=\lambda(K)+\lambda(L) . \lambda$ is strongly-modular if λ is supermodular and for every pair $I \subset J$ if there exists a $K, I \subset K \subset J$ such that (I, J, K) is λ-flat, then for every K^{\prime}, I $\subset K^{\prime} \subset J,\left(I, J, K^{\prime}\right)$ is λ-flat. Note that strict supermodularity implies there is no λ-flat triplet, hence strict supermodularity implies strong supermodularity.

It was shown in [3] that if the λ function defining a permutation polytope is strongly supermodular, then the polytope has many extra nice properties. They also proved that the λ function for the single-shape sumpartition problem is strongly supermodular; if the θ 's are distinct, then it is strictly supermodular. In this section we study the stronger supermodularities for the mean-partition problem.
We first settle the easy strict supermodularity issue. If θ 's are not all distinct, then clearly, λ is not strictly supermodular even for the single-shape model, labeled or unlabeled. On the other hand, if θ 's are all distinct, then the inequalities in Theorems 4 and 7 are all strict and strict supermodularity holds.
Next we deal with the strong supermodularity case. We first show by a counterexample that for the labeled single-shape mean-partition problem, the λ function as studied in Section 2 is not strongly supermodular.
Let $\left(n_{1}, n_{2}, n_{3}, n_{4}\right)=(1,2,3,4), I=\{3\}, J=\{1,2,3,4\}$ and $\theta=\left\{\theta_{1}, \theta_{2}, \ldots, \theta_{10}\right\}$. It is easily verified:
(1) $K=\{1,3\},, L=\{2,3,4\}$.

Then $\lambda(I)+\lambda(J)=\lambda(K)+\lambda(L) \Leftrightarrow \theta_{1}=\theta_{3}, \theta_{4}=\theta_{10}$,
(2) $K^{\prime}=\{1,2,3\}, L^{\prime}=\{3,4\}$.

Then $\lambda(I)+\lambda(J)=\lambda\left(K^{\prime}\right)+\lambda\left(L^{\prime}\right) \Leftrightarrow \theta_{4}=\theta_{10}$.
Since the two sets of conditions are different, we can easily construct a set θ such that the condition in (2) is satisfied but not the condition in (1), for example, $\theta=\{1,2,2,2,2,2,2,2,2,2\}$.
We next prove
THEOREM 9. For the unlabeled single-shape model, λ is strongly supermodular.

Proof. Let $I \subset J$. If $\theta_{N_{I I}+1}=\theta_{N_{|I|}}$, then every triplet (I, J, K) is λ-flat. On the other hand if there is a triplet (I, J, K) which is λ-fiat, without loss of generality, let $|K| \leqslant|L|$, then it is easily verified that

$$
\sum_{i=0}^{|K|-|I|} \sum_{j=N_{|I|+i}+1}^{N_{|l|+i+1}} \frac{\theta_{j}}{n_{|I|+i}}=\sum_{i=0}^{|J|-|L|} \sum_{j=N_{|L|+i}+1}^{N_{L L \mid+i+1}} \frac{\theta_{j}}{n_{|L|+i}},
$$

and $N_{|K|}<N_{|L|}$, then $\theta_{N_{|I|}+1}=\theta_{N_{| |}}$.
We summarize our results in the following table for those mean-partition models considered in Section 3 for which supermodularity holds:

Labeled	Shape	Distinct θ	Supermodularity
Yes	Single	No	Not strong
Yes	Single	Yes	Strict
No	Single	No	Strong, but not strict
No	Single	Yes	Strict

References

1. Anily, S. and Federgruen, A. (1991), Structured partition problems, Operational Research, 39, 130-149.
2. Gao, B., Hwang, F.K., Li, W.W-C. and Rothblum, U.G. (1999), Partition polytopes over 1-dimensional points, Mathematical Programming, 85, 335-362.
3. Hwang, F.K., Lee, J.S. and Rothblum, U.G. (2004), Permutation polytopes corresponding to strongly supermodular functions, Discrete Applied Mathematics, 142, 52-97.
4. Hwang, F.K., Liao, M.M. and Chen, C.Y. (2000), Supermodularity of various partition problems, Journal of Global Optimization, 18, 275-282.
5. Hwang, F.K. and Rothblum, U.G. (1996), Directional-quasi-convexity, asymmetric Schur-convexity and optionality of consecutive partitions, Mathematics Operational Research, 21, 540-554.
6. Shapely, L.S. (1971), Cores of convex gormes, International Journal of Game Theory 1, 11-29.

[^0]: *This research is partially supported by a Republic of China National Science grant NSC 92-2115-M-009-014.

