Supermodularity in Mean-Partition Problems*

F.H. CHANG and F.K. HWANG

Department of Applied Mathematics, National Chiao Tung University, Hsinchu, Taiwan, P.R. China 300 (e-mail: fei.am91g@nctu.edu.tw; fhwang@math.nctu.edu.tw)

(Received 23 November 2004; accepted 4 December 2004)

Abstract. Supermodularity of the λ function which defines a permutation polytope has proved to be crucial for the polytope to have some nice fundamental properties. Supermodularity has been established for the λ function for the sum-partition problem under various models. On the other hand, supermodularity has not been established for the mean-partition problem even for the most basic labeled single-shape model. In this paper, we fill this gap and also settle for all other models except one. We further extend our results to other types of supermodularity.

Key words: mean-partition, supermodular

1. Introduction

Given a real-value function λ on the subsets of $\{1, \ldots, p\}$ with $\lambda(\phi) = 0$, each permutation $\sigma = (\sigma_1, \ldots, \sigma_p)$ of $\{1, \ldots, p\}$ defines a vector $\lambda_{\sigma} = ((\lambda_{\sigma})_1, \ldots, (\lambda_{\sigma})_p)$ such that

$$(\lambda_{\sigma})_k = \lambda \left(\bigcup_{i=1}^k \sigma_i \right) - \lambda \left(\bigcup_{i=1}^{k-1} \sigma_i \right) \quad \text{for } 1 \leqslant k \leqslant p.$$

 λ is called *supermodular* if for all subsets I, J of $\{1, \ldots, p\}$,

$$\lambda(I \cup J) + \lambda(I \cap J) \geqslant \lambda(I) + \lambda(J)$$
,

and *strictly supermodular* if the inequality is strict for all I, J not satisfying $I \subseteq J$ or $J \subseteq I$.

The *permutation polytope* induced by λ , denoted H^{λ} , is the convex hull of $\{\lambda_{\sigma} : \text{ all } \sigma\}$. These polytopes have been studied in the literature with different motivations. For example, Shapley [6] studied the case of convex p-person game. For a subset $I \subseteq \{1, \ldots, p, \}$ let $\lambda(I)$ denote the payoff to I if the members of I form an alliance. Then stability of an alliance $I \cup J$ requires λ to be supermodular. If not, say, there exist I and J with

^{*}This research is partially supported by a Republic of China National Science grant NSC 92-2115-M-009-014.

$$\lambda(I \cup J) + \lambda(I \cap J) < \lambda(I) + \lambda(J)$$
.

Let y_i be the payoff of player i for each i in $I \cup J$ under the alliance $I \cup J$. Then it is easily verified that either

$$\sum_{i \in I} y_i < \lambda(I), \quad \text{or } \sum_{i \in J} y_i < \lambda(J).$$

In the first(second) case, I(J) will form its own alliance to obtain a larger payoff.

The *core* of a convex p-person game is the solution set of the linear inequality system

$$\sum_{i \in I} x_i \geqslant \lambda(I) \quad \text{for all } I \subseteq \{1, \dots, p\} \quad \text{and} \quad \sum_{i=1}^p x_i = \lambda(\{1, \dots, p\}).(1.1)$$

Let C^{λ} denote the polytope defined by (1.1). Among other things (See Theorem 3.2 of [2] for more details), Shapley proved

THEOREM 1. Suppose λ is supermodular. Then

- (1) $H^{\lambda} = C^{\lambda}$,
- (2) the vectors of H^{λ} are precisely the λ_{σ} 's where σ ranges over all permutations of $\{1, \ldots, p\}$.

The importance of Theorem 1 (1) is that if an optimization problem is to maximize a linear function of $\{x_i\}$, then C^{λ} provides a suitable setting for a linear programming solution. The importance of Theorem 1 (2) is that if the objective function is convex (in fact, quasi-convex suffices, see [5]), then an optimal solution can be found among the set of vertices of H^{λ} . Gao et al. [2] studied the single-shape sum-partition problem in which the indices of a set N of n real numbers $\theta_1 \leq \theta_2 \leq \cdots \leq \theta_n$ is to be partitioned into p parts π_1, \ldots, π_p , where the size of π_i is given to be $n_i(\{(n_1, \ldots, n_p): \sum_{i=1}^p n_i = n\})$ is called a shape, to maximize an objective function $f(\sum_{j \in \pi_1} \theta_j, \ldots, \sum_{j \in \pi_p} \theta_j)$. For I a subset of $\{1, \ldots, p\}$, define $n(I) = \sum_{I \in I} n_i$. They defined $\lambda(I) = \sum_{j=1}^{n(I)} \theta_j$ and proved λ is supermodular. Therefore Theorem 1 is applicable. Here, H^{λ} is the convex hull of all (n_i, \ldots, n_p) -partitions (each partition is a point), and C^{λ} is the polytope defined by

$$\sum_{i \in I} \sum_{j \in \pi_i} \theta_j \geqslant \lambda(I) \text{ for all } I \subseteq \{1, \dots, p\} \text{ and } \sum_{j=1}^n \theta_j = \lambda(\{1, \dots, p\}).$$

While the sum partition problem has been dominating in optimal partition problems, other partition problems have also been considered. Define $\bar{\theta}_{\pi_i} = \sum_{j \in \pi_i} \theta_j / n_i$, namely, the mean of θ_j 's in π_i . Anily and Federgruen [1] first studied the single-shape mean-partition problem where the objective function is $f(\bar{\theta}_{\pi_1}, \ldots, \bar{\theta}_{\pi_p})$. However, the function λ as defined in (1.1) has not been proved to be supermodular and Theorem 1 is thus not applicable. In this paper, we prove the supermodularity.

2. Supermodularity

For the single-shape partition case, without loss of generality, we can assume that $n_1 \le n_2 \le \cdots \le n_p$.

For $I = \{i_1, i_2, ..., i_k\} \subseteq \{1, ..., p\}$, we suppose that $i_i < i_2 < \cdots < i_k$. Define $N_{i_k} = \sum_{x=1}^k n_{i_x}$ for $1 \le k \le |I|$. Set

$$\lambda(I) = \sum_{k=1}^{|I|} \left(\sum_{j=N_{i_{k-1}}+1}^{N_{i_k}} \theta_j / n_{i_k} \right). \tag{2.1}$$

We first prove

LEMMA 2. For any shape partition $\pi = (\pi_1, \dots, \pi_p), \sum_{i \in I} \bar{\theta}_{\pi_i} \geqslant \lambda(I)$.

Proof. Define $A = \{\theta_j : j \in \pi_i, i \in I\}$ and $B = \{\theta_1, \dots, \theta_{N_{i_{|I|}}}\}$ Suppose $\lambda(I)$ is defined on A but $A \neq B$. Then we can reduce $\sum_{i \in I} \bar{\theta}_{\pi_i}$ by replacing any $\theta_j \in A \setminus B$ with a $\theta_k \in B \setminus A$. Therefore we assume A = B. Note that

$$\bar{\theta}_{\pi_i} = \sum_{j \in \pi_i} \theta_j (1/n_i), \tag{2.2}$$

and $\theta_1, \ldots, \theta_{N_{i_{|I|}}}$ are ordered from small to large. In $\lambda(I)$, the sequence of the multipliers for the θ_i 's is

$$\underbrace{\frac{1}{n_{i_1}}, \dots, \frac{1}{n_{i_1}}}_{n_{i_1}}, \underbrace{\frac{1}{n_{i_2}}, \dots, \frac{1}{n_{i_2}}}_{n_{i_2}}, \dots, \underbrace{\frac{1}{n_{i_{|I|}}}, \dots, \frac{1}{n_{i_{|I|}}}}_{n_{i_{|I|}}},$$

which are ordered from large to small. Since for any π , $\sum_{i \in I} \bar{\theta}_{\pi_i}$ is computed by multiplying the same set of θ_j 's with the same set of multipliers, except in different parings, $\lambda(I)$ achieves the minimum by pairing reversely.

Define $\Delta_I(\pi) = \lambda(I) - \lambda(I \setminus \{i_1\})$.

_

LEMMA 3. Suppose $I \subset J$ and $i_1 = j_1$. Then $\Delta_I(\pi) \leq \Delta_J(\pi)$. Proof. First assume $n_{j_1} = 1$

$$J: \overbrace{\theta_{1}}^{\pi_{j_{1}}}, \overbrace{\theta_{2}, \dots, \theta_{n_{j_{2}}}, \theta_{n_{j_{2}+1}}}^{\pi_{j_{2}}}, \overbrace{\theta_{n_{j_{2}+2}}, \dots, \theta_{n_{j_{2}+n_{j_{3}}}}, \theta_{n_{j_{2}+n_{j_{3}}+1}}, \dots}^{\pi_{j_{3}}}$$

$$J': \underbrace{\theta_{1}, \theta_{2}, \dots, \theta_{n_{j_{2}}}}_{\pi'_{j_{2}}}, \underbrace{\theta_{n_{j_{2}+1}}, \theta_{n_{j_{2}+2}}, \dots, \theta_{n_{j_{2}+n_{j_{3}}}}, \theta_{n_{j_{2}+n_{j_{3}}+1}}, \dots}_{\pi'_{j_{3}}}$$

$$Figure \ 2.1. \ \pi'_{j_{2}} \ and \ \pi'_{j_{3}}.$$

Let π' represent the corresponding partition on $J' = J \setminus \{j_1\}$. We use the same subscript j_k to remind the reader that $n_{j_k} = n'_{j_k}$ for all $2 \le k \le |J|$.

Figure 2.1 illustrates $\pi(J)$ and $\pi'(J')$. Note that the components of $\bar{\theta}_{\pi_{j_k}}$ (as in the representation (2.2)) cancels with the components in $\bar{\theta}_{\pi'_{j_k}}$ except the first one in $\bar{\theta}_{\pi_{j_k}}$ and the last one in $\bar{\theta}_{\pi'_{j_k}}$. Hence

$$\bar{\theta}_{\pi_{j_k}} - \bar{\theta}_{\pi'_{j_k}} = \frac{(\theta_{N_{j_k}} - \theta_{N_{j_{k-1}}})}{n_{j_k}} \quad \text{for } 1 \leqslant k \leqslant |J|.$$

Consequently,

$$\Delta_J(\pi) = \sum_{k=1}^{|J|} \frac{\theta_{N_{j_k}} - \theta_{N_{j_{k-1}}}}{n_{j_k}}.$$

Similarly,

$$\Delta_I(\pi) = \sum_{k=1}^{|I|} \frac{\theta_{N_{i_k}} - \theta_{N_{i_{k-1}}}}{n_{i_k}}.$$

Suppose $i_k = j_{g(k)}$ with $k \le g(k), 2 \le k \le |I|$. Then

$$G_{k}(J) \equiv \sum_{h=g(k-1)+1}^{g(k)} \frac{\theta_{N_{j_{h}}} - \theta_{N_{j_{h-1}}}}{n_{j_{h}}}$$

$$\geqslant \sum_{h=g(k-1)+1}^{g(k)} \frac{\theta_{N_{j_{h}}} - \theta_{N_{j_{h-1}}}}{n_{j_{g(k)}}} = \frac{\theta_{N_{j_{g(k)}}} - \theta_{N_{j_{g(k-1)}}}}{n_{j_{g(k)}}}.$$
(2.3)

Note that

$$\Delta_J(\pi) - \Delta_I(\pi) \geqslant \sum_{x=1}^{|I|} \left[G_x(J) - \frac{(\theta_{N_{i_x}} - \theta_{N_{i_{x-1}}})}{n_{i_x}} \right].$$

We prove for all $1 \le k \le |I|$,

$$\sum_{x=1}^{k} \left[G_x(J) - \frac{(\theta_{N_{i_x}} - \theta_{N_{i_{x-1}}})}{n_{i_x}} \right] \geqslant \frac{(\theta_{N_{j_{g(k)}}} - \theta_{N_{i_k}})}{n_{i_k}},$$

by induction on k. For k = 1

$$G_1(J) - \frac{(\theta_{N_{i_1}} - \theta_{N_{i_0}})}{n_{i_1}} = \frac{(\theta_{N_{j_1}} - \theta_{N_{j_0}})}{n_{j_1}} - \frac{(\theta_{N_{i_1}} - \theta_{N_{i_0}})}{n_{i_1}} = 0$$

since $j_1 = i_1$, $N_{i_1} = n_{i_1} = n_{j_1} = N_{j_1} = 1$, $\theta_{N_{i_0}} = \theta_{N_{i_0}} = \theta_{N_{i_0}} = 0$. For general k > 1,

$$\begin{split} \sum_{x=1}^{k} \left[G_{x}(J) - \frac{(\theta_{N_{i_{x}}} - \theta_{N_{i_{x}-1}})}{n_{i_{x}}} \right] &\geqslant G_{k}(J) - \frac{(\theta_{N_{i_{k}}} - \theta_{N_{i_{k}-1}})}{n_{i_{k}}} + \frac{(\theta_{N_{j_{g}(k-1)}} - \theta_{N_{i_{k}-1}})}{n_{i_{k}-1}} \\ &\geqslant \frac{(\theta_{N_{j_{g}(k)}} - \theta_{N_{j_{g}(k-1)}})}{n_{j_{g}(k)}} - \frac{(\theta_{N_{i_{k}}} - \theta_{N_{i_{k}-1}})}{n_{i_{k}}} \\ &+ \frac{(\theta_{N_{j_{g}(k-1)}} - \theta_{N_{i_{k}-1}})}{n_{i_{k}}} \\ &= \frac{(\theta_{N_{j_{g}(k)}} - \theta_{N_{i_{k}}})}{n_{i_{k}}}, \end{split}$$

since $n_{j_{g(k)}} = n_{i_k} \geqslant n_{i_{k-1}}$. Lemma 3 is proved.

For $n_j > 1$, we can handle in two ways. The first way is to notice that the only difference from the $n_{j_1} = 1$ case is that π_{j_k} and π'_{j_k} would miss each other out in n_{j_1} elements instead of 1 in Figure 2.1. So the numerator of (2.3) would be a difference between two n_{j_k} -sums; but the same logic applies. The second way is to notice that $\bar{\theta}_{n_{j_1}}$ gets canceled out in $\Delta_J(\pi) - \Delta_I(\pi)$. So the scenario is to compare the impact on I and J when both moves back n_{j_1} elements. But this is equivalent to moving one element back n_{j_1} times.

Finally, we are ready to prove the main result of this section.

THEOREM 4. λ as defined in (2.1) is supermodular.

Proof. Let I and J, be two subsets of $\{1, \ldots, p\}$. Without loss of generality, assume $I \cup J = \{1, 2, \ldots, m\}$. We prove Theorem 4 by induction on m. Theorem 4 is trivially true for m = 1. We prove the general $m \ge 2$ case.

Case (1) $1 \in I \cap J$, i.e. both I and J contain 1. Delete π_1 and the θ_j 's in it. Suppose $n_1 = k$. Then the reduced partition problem is to partition the set $\{\theta_{k+1}, \ldots, \theta_n\}$ into p-1 parts. Theorem 4 follows by induction.

Case (2) $1 \notin I \cap J$. Without loss of generality, assume $1 \in I$. Let $J^* = J \cup \{1\}$. By case (1),

$$0 \leqslant \lambda(I \cup J^*) + \lambda(I \cap J^*) - \lambda(I) - \lambda(J^*)$$

= $[\lambda(I \cup J^*) - \lambda(I)] + [\lambda(I \cap J^*) - \lambda(J^*)]$
 $\leqslant [\lambda(I \cup J) - \lambda(I)] + [\lambda(I \cap J) - \lambda(J)].$

Since the first difference is unchanged, and the second becomes larger by Lemma 3, i.e., $\lambda(I \cap J^*) - \lambda(I \cap J) = \Delta_{I \cap J^*}(\pi) \leq \Delta_{J^*}(\pi) = \lambda(J^*) - \lambda(J)$. \square

3. Other Mean-Partition Models

In the last two sections we studied the labeled single-shape partition problem where the λ function is defined on a single shape. In this section we study some other partition models which have been studied before [4] for the sum-partition problem. One common feature of these models is that λ is defined on a given set S of shapes. For example, in the unlabeled single-shape model, let $\{n_1, n_2, \ldots, n_p\}$ denote the given single shape. Then S consists of all permutations of $\{n_1, n_2, \ldots, n_p\}$. In the labeled bounded-shape model, a set of lower and upper bounds $L_i \leq n_i \leq U_i, i = 1, \ldots p$, is given, and S consists of all shapes $\{n_l, n_2, \ldots, n_p\}$ satisfying the bounds with $\sum_{i=1}^p n_i = n$. In the labeled constraint-shape model, S is a given set of shapes with each summing to n. In the unlabeled version for either the bounded-shape of the constraint-shape model, S consists of all permutations of a shape in the labeled version.

Let $\lambda_s(I)$ denote the $\lambda(I)$ in (2.1) where I is taken from the shape $s \in S$. Define $\lambda(I) = \min_{s \in S} \lambda_s(I)$. Then clearly

LEMMA 5. For any partition
$$\pi = (\pi_1, \pi_2, \dots, \pi_p)$$
 with shape $s = (n_1, n_2, \dots, n_p), s \in S, \sum_{i \in I} \bar{\theta}_{\pi_i} \geqslant \lambda(I).$

Let $X \Rightarrow Y$ mean supermodularity for model X implies for model Y. Then for both the labeled and unlabeled case, clearly,

constraint-shape \Rightarrow bounded-shape \Rightarrow single-shape.

For the sum-partition problem, the following results have been obtained [4]:

Labeled	Shape	θ	Supermodularity
Yes	Single	General	Yes
Yes	Bounded	General	Yes
Yes	Constrained	1-side	No
No	Single	1-sided	Yes
No	Single	General	No
No	Bounded	1-sided	No
No	Constrained	1-sided	No

Here, 1-sided means that θ 's are either all nonnegative or all nonpositive. In this section, we also consider the supermodularity properties of λ for various mean-partition models. Note that only the ordering of θ 's, but not their signs, matters for the mean-partition problem. Therefore there is no need to study the 1-sided case.

LEMMA 6. Let $S = \{s\}$ denote the set of all permutations of the shape s. Consider $s = \{n_1, n_2, \dots, n_p\}$ and $I = \{1, 2, \dots, k\}$, then for all $I' = \{i_1, i_2, \dots, i_k\}$ with $i_1 < i_2 < \dots < i_k$, and $\{i_1, i_2, \dots, i_k\} \subseteq \{1, 2, \dots, p\}, \lambda(I') \geqslant \lambda(I)$.

Proof. Since θ_j is increasing and $i_h \ge h$, $1 \le h \le k$. We have $N_{i_h} \ge N_h$ and $\theta_{N_{i_h}+x} \ge \theta_{N_h+x}$ for all x > 0.

$$\sum_{j=N_{h-1}+1}^{N_h} \frac{\theta_j}{n_h} \leqslant \sum_{j=N_{h-1}+1}^{N_{h-1}+n_{i_h}} \frac{\theta_j}{n_{i_h}} \leqslant \sum_{j=N_{i_{h-1}}+1}^{N_{i_h}} \frac{\theta_j}{n_{i_h}}.$$

Then,

$$\lambda(I) = \sum_{h=1}^{|I|} \left(\sum_{j=N_{h-1}+1}^{N_h} \frac{\theta_j}{n_h} \right) \leqslant \sum_{h=1}^{|I'|} \sum_{j=N_{i_{h-1}}+1}^{N_{i_h}} \frac{\theta_j}{n_{i_h}} = \lambda(I').$$

THEOREM 7. Consider $S = \{(n_1, n_2, ..., n_p)\}$. Then λ is supermodular. *Proof.*

$$\lambda(I) = \sum_{h=1}^{|I|} \left(\sum_{j=N_{h-1}+1}^{N_h} \frac{\theta j}{n_h} \right) \text{ for all } I \subseteq \{1, 2, \dots, p\}.$$

We may assume that $I \cap J = \emptyset$. Suppose to the contrary that $I \cap J \neq \emptyset$. We can delete n_i 's, for all $i \leq |I \cap J|$ and θ_j , for all $j \leq N_{|I \cap J|}$. Then the reduced partition problem is to partition the set $\{\theta_{N_{I \cap J}+1}, \ldots, \theta_n\}$ into $p - |I \cap J|$ parts

with $I' \cap J' = \emptyset$. Without loss of generality, let $I \cup J = \{1, 2, ..., |I| + |J|\}$, $I = \{1, 2, ..., |I|\}$ and $J = \{|I| + 1, |I| + 2, ..., |I| + |J|\}$. Then

$$\lambda(I) + \lambda(J) = \sum_{h=1}^{|I|} \left(\sum_{j=N_{h-1}+1}^{N_h} \frac{\theta_j}{n_h} \right) + \sum_{h=1}^{|J|} \left(\sum_{j=N_{h-1}+1}^{N_h} \frac{\theta_j}{n_h} \right)$$

$$\leq \sum_{h=1}^{|I|} \left(\sum_{j=N_{h-1}+1}^{N_h} \frac{\theta_j}{n_h} \right) + \sum_{h=1}^{|J|} \left(\sum_{j=N_{|I|+h-1}+1}^{N_{|I|+h}} \frac{\theta_j}{n_{|I|+h}} \right)$$
(by Lemma 6)
$$= \lambda(I \cup J).$$

For a given p-vector (a_1, a_2, \ldots, a_p) , let $a_{[i]}$ denote the i-th smallest a_j . A p-vector $A = (a_1, a_2, \ldots, a_p)$ majorizes another p-vector $B = (b_1, b_2, \ldots, b_p)$ if for all $1 \le k \le p-1$

$$\sum_{i=1}^{k} a_{[i]} \leqslant \sum_{i=1}^{k} b_{[i]}, \text{ for all } 1 \leqslant k \leqslant p-1, \text{ and } \sum_{i=1}^{p} a_{i} = \sum_{i=1}^{p} b_{i}.$$

For a set S of shapes, $A \in S$ is a nonmajorized shape if there does not exist a shape $B \in S$ such that B majorizes A.

Next we show by a counterexample that for the unlabled bounded-shape model, λ is not supermodular. Note that we only need to consider that λ takes values from the set of nonmajorized shapes since if a shape B is majorized by another shape A, then $\lambda_B(I) \geqslant \lambda_A(I)$ and B would not be chosen in defining $\lambda(I)$.

Let p = 4, n = 19, $l_1 = 1$, $l_2 = l_3 = l_4 = 2$, $u_1 = 13$, $u_2 = u_3 = u_4 = 6$, $\theta_1 = 1$, $\theta_2 = \dots = \theta_6 = 2$, $\theta_i = 5$, $7 \le i \le 19$, $I = \{1, 2\}$, $J = \{1, 3\}$. The nonmajorized shapes are $\{(1, 6, 6, 6), (13,2,2,2)\}$ and their permutations

$$\lambda(I) = \left(\frac{1+2}{2} + \frac{2+2}{2}\right) \text{ or } \left(\frac{1}{1} + \frac{2+2+2+2+2+5}{6}\right) = \frac{7}{2} = \lambda(J),$$

$$\lambda(I \cap J) = \frac{1}{1} = 1,$$

$$\lambda(I \cup J) = \frac{1+2}{2} + \frac{2+2}{2} + \frac{2+2}{2} = \frac{11}{2},$$

$$\lambda(I) + \lambda(J) = 7 > \frac{13}{2} = \lambda(I \cap J) + \lambda(I \cup J).$$

Next we show by a counterexample that for the labeled constrained shape model, λ is not supermodular. Let $p=4, n=19, S=\{(2, 2, 2, 13), (1, 6, 6, 6)\}$,

$$\theta_{1} = 1, \theta_{2} = \dots = \theta_{6} = 2, \theta_{i} = 5, 7 \leqslant i \leqslant 19, I = \{1, 2\}, J\{1, 3\}.$$

$$\lambda(I) = \left(\frac{1+2}{2} + \frac{2+2}{2}\right) \text{or} \left(\frac{1}{1} + \frac{2+2+2+2+2+5}{6}\right) = \frac{7}{2} = \lambda(J),$$

$$\lambda(I \cap J) = \frac{1}{1} = 1,$$

$$\lambda(I \cup J) = \frac{1+2}{2} + \frac{2+2}{2} + \frac{2+2}{2} = \frac{11}{2},$$

$$\lambda(I) + \lambda(J) = 7 > \frac{13}{2} = \lambda(I \cap J) + \lambda(I \cup J).$$

The following table summarizes our results.

Labeled	Shape	Supermodularity
Yes	Single	Yes
Yes	Bounded	?
Yes	Constrained	No
No	Single	Yes
No	Bounded	No
No	Constrained	No

Finally, we give a sufficient condition for establishing supermodularity.

THEOREM 8. Let Π be an unlabeled (labeled) bounded-shape set. If $\lambda(I \cap J)$ and $\lambda(I \cup J)$ can take values from the same shape A, then $\lambda(I) + \lambda(J) \leq \lambda(I \cap J) + \lambda(I \cup J)$.

Proof. $\lambda(I) \leq \lambda_A(I), \lambda(J) \leq \lambda_A(J)$. Since supermodularity holds for the single shape A. $\lambda(I) + \lambda(J) \leq \lambda_A(I) + \lambda_A(J) \leq \lambda_A(I \cap J) + \lambda_A(I \cup J) = \lambda(I \cap J) + \lambda(I \cup J)$.

4. Stronger Supermodularites

Hwang et al. [3] defined the notion of strong supermodularity which lies between supermodularity and strict supermodularity. Let I, J, K be subsets of $\{1, 2, \ldots, p\}$ such that $I \subset K \subset J$. Define $L = I \cup (J \setminus K)$. A triplet (I, J, K) is called λ -flat if $\lambda(I) + \lambda(J) = \lambda(K) + \lambda(L)$. λ is strongly-modular if λ is supermodular and for every pair $I \subset J$ if there exists a $K, I \subset K \subset J$ such that (I, J, K) is λ -flat, then for every $K', I \subset K' \subset J$, (I, J, K') is λ -flat. Note that strict supermodularity implies there is no λ -flat triplet, hence strict supermodularity implies strong supermodularity.

It was shown in [3] that if the λ function defining a permutation polytope is strongly supermodular, then the polytope has many extra nice properties. They also proved that the λ function for the single-shape sumpartition problem is strongly supermodular; if the θ 's are distinct, then it is strictly supermodular. In this section we study the stronger supermodularities for the mean-partition problem.

We first settle the easy strict supermodularity issue. If θ 's are not all distinct, then clearly, λ is not strictly supermodular even for the single-shape model, labeled or unlabeled. On the other hand, if θ 's are all distinct, then the inequalities in Theorems 4 and 7 are all strict and strict supermodularity holds.

Next we deal with the strong supermodularity case. We first show by a counterexample that for the labeled single-shape mean-partition problem, the λ function as studied in Section 2 is not strongly supermodular.

Let $(n_1, n_2, n_3, n_4) = (1, 2, 3, 4)$, $I = \{3\}$, $J = \{1, 2, 3, 4\}$ and $\theta = \{\theta_1, \theta_2, \dots, \theta_{10}\}$. It is easily verified:

(1)
$$K = \{1, 3, \}, L = \{2, 3, 4\}.$$

Then $\lambda(I) + \lambda(J) = \lambda(K) + \lambda(L) \Leftrightarrow \theta_1 = \theta_3, \theta_4 = \theta_{10},$
(2) $K' = \{1, 2, 3\}, L' = \{3, 4\}.$
Then $\lambda(I) + \lambda(J) = \lambda(K') + \lambda(L') \Leftrightarrow \theta_4 = \theta_{10}.$

We next prove

THEOREM 9. For the unlabeled single-shape model, λ is strongly supermodular.

Proof. Let $I \subset J$. If $\theta_{N_{|I|}+1} = \theta_{N_{|J|}}$, then every triplet (I, J, K) is λ -flat. On the other hand if there is a triplet (I, J, K) which is λ -flat, without loss of generality, let $|K| \leq |L|$, then it is easily verified that

$$\sum_{i=0}^{|K|-|I|} \sum_{i=N_{|I|+i}+1}^{N_{|I|+i+1}} \frac{\theta_j}{n_{|I|+i}} = \sum_{i=0}^{|J|-|L|} \sum_{j=N_{|I|+i}+1}^{N_{|L|+i+1}} \frac{\theta_j}{n_{|L|+i}},$$

and
$$N_{|K|} < N_{|L|}$$
, then $\theta_{N_{|I|}+1} = \theta_{N_{|J|}}$.

We summarize our results in the following table for those mean-partition models considered in Section 3 for which supermodularity holds:

Labeled	Shape	$Distinct\theta$	Supermodularity
Yes	Single	No	Not strong
Yes	Single	Yes	Strict
No	Single	No	Strong, but not strict
No	Single	Yes	Strict

References

- 1. Anily, S. and Federgruen, A. (1991), Structured partition problems, *Operational Research*, 39, 130–149.
- 2. Gao, B., Hwang, F.K., Li, W.W-C. and Rothblum, U.G. (1999), Partition polytopes over 1-dimensional points, *Mathematical Programming*, 85, 335–362.
- 3. Hwang, F.K., Lee, J.S. and Rothblum, U.G. (2004), Permutation polytopes corresponding to strongly supermodular functions, *Discrete Applied Mathematics*, 142, 52–97.
- 4. Hwang, F.K., Liao, M.M. and Chen, C.Y. (2000), Supermodularity of various partition problems, *Journal of Global Optimization*, 18, 275–282.
- 5. Hwang, F.K. and Rothblum, U.G. (1996), Directional-quasi-convexity, asymmetric Schur-convexity and optionality of consecutive partitions, *Mathematics Operational Research*, 21, 540–554.
- 6. Shapely, L.S. (1971), Cores of convex gormes, *International Journal of Game Theory* 1, 11–29.